PHYSICAL REVIEW E

VOLUME 48, NUMBER 4

OCTOBER 1993

Nonlinear conductivity and composition of partially ionized plasmas
in a strong electric field

K. Morawetz
Maz-Planck-Gesellschaft, Arbeitsgruppe “Theoretische Vielteilchenphysik,” Universitit Rostock, 18055 Rostock, Germany

M. Schlanges
Fachbereich Physik, Abteilung Theoretische Physik, Ernst-Moritz Arndt Universitdt Greifswald, 17489 Greifswald, Germany

D. Kremp
Fachbereich Physik, Universitat Rostock, 18055 Rostock, Germany
(Received 8 March 1993)

A partially ionized hydrogen plasma is considered, under the influence of a strong electric field. The
nonlinear electrical conductivity is calculated in a self-consistent manner from the quantum transport
cross sections of the electron-scattering processes and from a field-dependent nonequilibrium mass-
action law in order to determine the plasma composition. Field effects dominate the electric transport
properties at low densities because of the high ionization rates. At high densities, a strong increase
of the conductivity describes the Mott effect caused by the many-body effects in the dense plasma.
A minimum of the degree of ionization and the conductivity assign the interplay between field and
many-particle effects. This minimum is reinforced by the field dependence of the mass-action law.

PACS number(s): 52.25.—b, 05.20.Dd, 82.20.Mj, 34.80.—i

I. INTRODUCTION

The transport properties of dense partially ionized
plasmas are of special importance because of their rel-
evance for the investigation of particle-beam—plasma in-
teractions, for astrophysical problems, and for the devel-
opment of high-power light sources [1-3]. An important
quantity to describe the plasma properties is the electri-
cal conductivity. There are many papers dealing with the
calculation of this transport coefficient [4-11]. In most
of the papers the linear-response regime is assumed valid
for applied weak electric fields. Under such conditions
the electrical conductivity is a field-independent quantity
and it can be calculated solving the kinetic equation for
small deviations from thermodynamic equilibrium. The
collision processes may be considered, neglecting field ef-
fects, and the plasma composition is determined by a
Saha equation, valid for the thermodynamic equilibrium.

In recent years there has been a growing interest con-
cerning the investigation of the nonequilibrium proper-
ties of dense partially ionized plasmas in strong electric
fields. In this case, the assumptions made above for weak
fields cannot be applied. Introducing an electrical con-
ductivity again, the latter now shows a nonlinear field
dependence determined by the kinetic equation valid for
arbitrary field strength. The following field effects must
be taken into account: (i) the explicit nonlinear field de-
pendence of the electron distribution function; (ii) the
collision integrals are influenced by the strong electric
field; and (iii) the plasma composition has to be de-
termined from a nonequilibrium field-dependent mass-
action law. A method used in order to solve the ki-
netic equation, also used in the paper presented here,
is to expand the electron distribution function in terms
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of the anisotropy caused by the electrical field [12-14].
In the diffusion approximation of the collision integrals,
the isotropic part of the distribution function is given
by a Davydov-type expression. The conductivity is ex-
pressed then by the field-dependent distribution function,
the scattering cross sections, and the number densities of
the different plasma species. As already mentioned, the
number densities cannot be calculated from Saha equa-
tions of thermodynamic equilibrium, as it may be done
in the linear-response regime. The applied strong electric
field gives rise to considerable changes in the plasma com-
position in comparison to that of thermodynamic equilib-
rium. Therefore, the field-dependent plasma composition
as well as the field-dependent electrical conductivity have
to be determined in a self-consistent manner from the ki-
netic equation. The number densities now follow from
nonequilibrium rate equations instead of Saha equations
[14]. That requires the knowledge of the field-dependent
ionization and recombination rate coeflicients determined
by quantum statistical expressions given by the consid-
ered kinetic equation [15, 16].

The paper is organized as follows. In Sec. IT the ki-
netic equation is discussed, which is used to describe the
nonequilibrium properties of a partially ionized hydro-
gen plasma. The solution of the kinetic equation then is
presented in Sec. III, applying the diffusion approxima-
tion and taking into account three-body collisions such
as elastic, excitation, and ionization processes. In Sec.
IV the field-dependent plasma composition then is calcu-
lated from a nonequilibrium field-dependent mass-action
law. Finally, the results for the electrical conductivity
are presented in Sec. V, including the relaxation effect in
a first approximation.
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II. KINETIC EQUATION FOR fects. Such equations were given in three-particle colli-

NONIDEAL PLASMAS sion approximation using the method of nonequilibrium
real-time Green’s functions [17, 18]. For the Wigner dis-
tribution function f, of the free particles of species a in
an external field U (R, t), this equation can be written in
the form

In order to describe the transport properties of dense
partially ionized plasmas one has to start from quantum
kinetic equations which take into account the formation
and the decay of bound states as well as many-body ef-

|
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On the right-hand side the two- and three-particle scattering processes are taken into account by the corresponding
collision integrals discussed below. On the left-hand side the drift of quasiparticles is described with energies following
from the dispersion relation

2
Eo(pRt) = 2— + ReSE(pwRt)|nw—rg, (ore) + U(RY). (2.2)
2m,

The real part of the retarded self-energy function ©F gives the shift to the energy of an isolated particle due to the
influence of the surrounding plasma particles. In the considered three-particle collision approximation we have in
diagrammatic representation
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where ¥, denotes the causal self-energy function. in the channel x and N, is the phase-space occupation
The two-particle T' matrix is determined by the gener- factor.
alized Lippmann-Schwinger equation To work with the energy shifts given by (2.2) is a diffi-
cult problem. But it is sufficient in many cases to approx-
Top(2) = Vap + Vab(_.‘__ﬁf_b_z Vb (2.4) imate E(pRt) by a momentum-independent quasiparticle
—Hg, shift [19]. Then one has instead of (2.2)
with H;{f = E,+ Ep+ (1 — fo — fv)Vap being an effective )
Hamiltonian for the two-body problem in the medium. E. (bR p
t) = — + AL (Rt) + U(Rt).
The three-particle processes are described by the T op- a(pFY) 2mg o(Rt) (Bt)
erators
N In this approximation, the shift is related to the chemical
:bnc’ = aﬁl;c + 7’ abc Oeff abe 0 aﬁ:l(n (2~5) potential according to
Ha:e NabCVabc
_ 1deal . corr
which determine the transition probabilities between the Ha = +Aa, de, Ag=pg (2.6)
initial and the final three-body scattering channels (x is On the rlght—hand side of the kinetic equation (2.1) the
the channel quantum number). H%f is the Hamiltonian collision integrals of the two- and three-particle scattering
of three free quasiparticles w1th single-particle energies processes are taken into account. I (ﬁ, is the quantum-
given by (2.2). Furthermore, V. denotes the potential mechanical Boltzmann collision term

TABLE I. The notation of the multichannels used in 2.8.

K channel |kar) E, fr N,

0 a+b+c [Pa)|Po) [Pe) E.+ FE, + E. Jafofe (1 - fa)(1 = fo)(1 — fo)
1 a+ (b + C) Ipa)'nbcpbc> Ea -+ EnPbc f"-Fnbc (1 - fa)(l =+ Fnbc)

2 b+ (a+c) [P)|nacPac) Ep + Enp,. foFn,. (1= fo)(1+ Fn,.)

3 c+(a+b) |Pe) Inab Pab) E.+ Enp,, feFn,, (1 - f)A+ Fa,)
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The three-particle collision integral reads
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The collision term (2.8) contains all the possible three-
body scattering processes with free and bound particles.
In order to classify the different processes, we have ap-
plied the notation of multichannel scattering theory ex-
plained in Table I.

The last contribution on the right-hand side of Eq.
(2.1) follows from the first-order gradient expansion of
the kinetic equation. It ensures energy conservation in
binary collision approximation and the compensation of
the secular divergencies in I,p..

As can be seen from (2.8), the solution of the kinetic
equation (2.1) requires the knowledge of the distribution

dk},dkydk}, _
Iop = h2/ ~2nhy 25 (ko + ki — ka — k) V(K

x/ d'r2cos{ [(ea—i—eb
0
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where f, = f(ko — eE7T,T — 7). This field-dependent
collision integral contains two important effects: (i) the
collisional broadening, which is a memory effect also ex-
isting in the zero-field case; and (ii) the intracollisional
field effect, which is determined by the field-dependent
two-particle dynamics. In the following we will consider
the collision integrals in the form given by (2.7) and (2.8)
and account for the field dependence of the collision inte-
gral in a simplified manner introducing a relaxation field
which follows from (2.9) [26, 21, 27, 25].

III. THE ELECTRON DISTRIBUTION
FUNCTION

A. Diffusion approximation

In the following a spatially homogeneous hydrogen
plasma is investigated in a constant electric field with
arbitrary field strength E. In order to solve the field-
dependent kinetic equation (2.1), several methods are
presented in literature [12]. We will restrict us to the
Fokker-Planck approximation of collision integrals. Fur-
thermore, we account for anisotropy in a first approxi-
mation:

fe=f£-+—fCICOS'¢9, (31)

eb)'r -

-

function of the bound particles. The kinetic equation of
the bound states can be derived very similarly to that of
the free particles. The explicit expression of the corre-
sponding three-particle collision integral can be found in
16, 20].

At this point we have to remark that the collision in-
tegrals for plasmas in strong electric fields are modified
by the field which results in an explicit field dependence.
But these modifications are unknown up to now for the
level of approximation used in this paper. The field de-
pendence of the two-particle collision integral is known
in first Born approximation. One gets [21-25]

a_k_a)
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(2.9)

where f0 is the isotropic part of the electron distribu-
tion function which includes the field dependence explic-
itly. This is an extension of the usually used Chapman-
Enskog method [28, 29]. If we insert (3.1) in the electron
kinetic equation assuming the diffusion approximation in
the stationary case we arrive at [13, 30]

1(9 e a 0 —_
zap{ ( e HT—e[pfwakaa—pfeD}—O,

(3.2)

0. 1,4
E +fl= 3.3
e 3pfe e =0 (33)

P
Here the contributions of collisions are included in the
energy- and momentum-relaxation time

1 myg -1 _
Te = |Va+Vp+Vao + m Ve |, Tp = (Vﬂ +vp+ Va.l)
e

(3.4)

where the collision frequencies v; are connected with the
quantum mechanical transport cross sections O'JT = f (1 —
cos )do by

p T

V-=—n0'
J m]]

(3.5)
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Here j = a describes the electron-atom scattering,
j = p the electron-proton scattering, j = e the electron-
electron scattering, and j = ag,a; the excitation pro-
cesses. The influence of ionization processes are described
by j = i. Details of the derivation can be found in [13,
30].

The solution of the homogeneous equations (3.2) and
(3.3) is the well-known Davydov expression

de

€

Oh — Cex — / 3.6

fe P 0 mpe’Eir,T, (3.6)

kT + —TL
3m

Some interesting special cases follow from (3.6). As-

suming that the energy dependence of the relaxation

times can be represented by an effective scattering cross
section

m —
To7e = 2 [ner ™ (e)] 2
we get the following limiting behavior. As a first special
case we assume an energy dependence

b
oeﬂ(e) = %’
Then it follows a Maxwell distribution with an electron
temperature which goes with the field squared
2 2
with T, =T+ S 2

_ —e/kT.
fole) = ce / 6n2b2’

If the cross section is given by a constant value the well-
known Druyvesteyn distribution function for high fields

MH ge

TpTe e ”
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[31] can be obtained
a/kT
o F(e) =b, fole) =c (2 + 1) e~ /KT

e?E?
6n2b2kT’

The limiting case

with a =

aeﬂ(e) =be 1, fo(e) = c(1 + bE)«b/kT

neb

with E < Ey =2
e

indicates that we have only normalizable distribution
functions for fields below a critical value. For effective
cross sections decreasing faster with energy than the last
case we cannot find normalizable distribution functions.
The interaction mechanism is not energetically effective
enough to produce a stationary solution in this case.

Due to the observation of unnormalizable distribution
functions we conclude that there exist electrons, which
are accelerated unlimited theoretically. Following the
idea of Gurevich [32] we can account for this fact by
a nonvanishing flux, the divergence of which is equal to
zero in Eq. (3.2). This means that we admit a constant
flux of electrons reaching every upper limit in momentum
space, but which is bounded by the system of course. In
order to determine this flux we return to the differen-
tial equation (3.2) and use the general solution instead
of the fO* (3.6), which is the solution of the homogeneous
equation (3.2). The general solution reads

ﬁ=aﬁ1+@/
© (2mge)a(CETepma
3m

e

For the secondary boundary condition, besides the nor-
malization we choose that the momentum of electrons are
limited somewhere by the boundaries

0

e

For — 0 for p— Pmax.
e

(3.8)

The resulting distribution function will be shown in Sec.
IIIC. But first we have to determine the quantum-
mechanical cross sections which enter the distribution
function according to (3.4) and (3.5).

B. Transport cross sections

Following (3.6) and (3.7) the electron distribution func-
tion is expressed in terms of the collision frequencies of
the electron-scattering processes. That requires the de-
termination of the transport cross sections and the com-
position of the plasma.

First the determination of transport cross sections is
considered. In the case of the electron-electron and the
electron-proton collisions the cross sections were calcu-

(3.7)

+kT)f2(e)

[

lated in a well-known manner from the scattering phase
shifts by numerical solution of the radial Schrodinger’s
equation. The effective two-body interaction between the
charged particles is assumed to be a statically screened
Debye potential

V) <2(B)

9 6 q’O?E = 1+ 9
€(q,0, F) ( ) q?

(3.9)

V:f(% 0,E) =

where Vo,(q) = 4me?/q? is the Fourier transform of the
Coulomb potential and €(g,0) is the random-phase ap-
proximation (RPA) dielectric function in static approxi-
mation. The influence of the electric field on the two-
body interaction we have accounted for in the static
dielectric function introducing a field-dependent inverse
Debye radius [33]

K} (E) = K2(E) + K2, k2= 4mfnyes.

For the electron contribution follows in the RPA static
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FIG. 1. The ratio of field-dependent Debye-screening pa-

rameters to field-free ones vs field strength for the two differ-
ent boundary conditions and a temperature of 16 000 K and
two different Debye lengths.

approximation

2 mkT

KY(E) = kI ——
(B) Ke27r2h3ne

oo
[ avrew.m). (3.10)
Here we have considered the isotropic part only, following
from the isotropic electron distribution function f2 given
by (3.7). As it can be seen, the field-dependent screened
potential is determined in a self-consistent manner by the
field-dependent electron distribution function. In Fig. 1
the screening parameter k.(E) is shown as a function of
the electric-field strength using the distribution function
discussed in the following in Fig. 2. As expected the elec-
tric field gives rise to a weakening of the screening caused
J

d2

0L +1)
@ B

A R CAGIEY

folr) + [k
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FIG. 2. Isotropic distribution function (upper) in artificial

units vs momentum for a free-electron density of 10'%1, a
degree of ionization of 0.1, and a temperature of 16 000 K with
six different field strengths. In the lower panels, three fields
are picked out together with the corresponding anisotropic
part (dotted line).

by the electrons. It should be mentioned here again that
field effects for the heavy particles were neglected.

The elastic scattering of electrons on hydrogen atoms
in the ground state was treated by applying the adiabatic
exchange model. Starting from the close-coupling equa-
tions the approximations involved in this model permit
us to reduce the quantum-mechanical three-body prob-
lem to the electron scattering in an effective atomic po-
tential. The radial part of the electron-scattering wave
function f;(r) then satisfies the integro-differential equa-
tion [34, 35]

[e ] 2 o0 _
= iqsl,{(El —-kz)&[,oA fod1.d7 + 21 (r‘/o feprs7 (£+1) g

op—(£+1)

2r— Y T o 21,[ T (1)
+ (2[_‘_1)/(; fedramdr (2£+1)/0 fet1sT +1 dT)} (3.11)

Here k? = (2m.)(E — E;)/h is the wave number and ¢,
is the ground-state wave function of a hydrogen atom. In
(3.11) the upper sign refers to the singlet, the lower sign
to the triplet electron-scattering state.

The static part of the atomic potential is given by

Vi (r) = —€ (l + i) e~?r/es,

3.12
T ap ( )

The polarization potential was determined in dipole ap-

I
proximation assuming static Debye screening in the two-
body interaction potentials. Introducing a fit radius rg
we arrive at
pol( ) ez 2 2
Vig(r) = —————— (1 + kr)%e 2",
eH 2 (1‘2 + 'f‘g)z ( )
Here a is the atomic polarizability and the parameter ro
was chosen to be 7o = 1.6ap, which interpolates the be-
havior for small distances [36]. We have solved Eq. (3.11)

2 (3.13)
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FIG. 3. Quantum-mechanical transport cross sections for

Paschen excitation series in comparison with the ionization
and electron-atom cross section.

numerically using a method given by Marriott [37] in or-
der to determine the scattering phase shifts and finally
the transport cross sections.

Additionally to the elastic electron-atom scattering we
have included excitation and ionization processes from
the atomic ground state by electron impact. This was
done in a simplified manner using a fit formula for the
total cross section given by Drawin and Emard [38]. Nu-
merical results for the cross sections of the elastic- and
the inelastic-scattering processes are shown in Fig. 3. As
it can be seen, the inelastic processes are of importance
at higher impact energies, which determine essentially
the behavior of the electron distribution function at high
electric fields.

C. Field-dependent distribution function

Using the quantum-mechanical scattering cross sec-
tions calculated above we want to discuss the main fea-
tures of the field dependence of the electron distribution
function (3.7) assuming a fixed plasma composition de-
termined by a field-independent mass-action law valid for
thermodynamic equilibrium. In Fig. 2 the distribution
function is shown for different field strengths. As it can
be seen, the electric field causes a broadening to higher
energies. At energies above the first excitation threshold
of electron-atom scattering the electrons cool down. This
leads to a decrease of the distribution function providing
stationarity. Further, it causes a second maximum at
energies near 13.6 eV, which is the low-density ioniza-
tion threshold. Above the critical field strength, which
was here 107 V/m, the inelastic scattering is no longer
effective enough to produce a stationary solution. The
result is a nonrenormalizable distribution function, as it
was discussed in Sec. III. This can be expressed by a cer-
tain runaway-electron current. There we start from the
general solution of (3.2) and use the Gurevich boundary
condition to fix the distribution function at a special up-
per limit of energy at 122.4 eV. It could be shown that
the transport properties do not change if this limit is en-
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FIG. 4. The runaway electron stream (in %) of the elec-
tron density per atomic time units vs electric fields for dif-
ferent screening parameters in the partially ionized hydrogen
plasma (see Fig. 2) and a temperature of 16 000 K.

larged. The flux mentioned, which can be interpreted
as the stream of runaway electrons reaching every upper
limit in momentum domain [12, 30], can be seen in Fig.
4. Around the critical field strength the runaway current
increases rapidly due to the long tail of the distribution
function. It also indicates the breakdown of the system.

The behavior of the distribution function at higher
field strengths is essentially influenced by the ionization
and excitation processes. Especially, if the critical field
strength, discussed above, is exceeded, stationarity will
be possible only due to boundary conditions of the sys-
tem. This is the reason why different attempts yield dif-
ferent results in this field regime. In Fig. 5 the conductiv-
ity is plotted versus the electric field for a fixed plasma
composition. The result with the Davydov expression
(3.6) is plotted in comparison with the Schenter-Liboff re-

o1 - 5
U(lel) 10 T T T T T

10°
10 10*  10% 10% 107 10®  10°
E (V/m)

FIG. 5. Static conductivity vs electric field for different
treatments. The Schenter-Liboff result (L) and the Dawydow
(H) expression (3.6) together with the modified boundary
solution by Gurevich (G).
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sult [10]. Our used Gurevich variant (3.7) decreases the
conductivity somewhat by the ionization processes and
yields almost constant values at higher field strengths.
This is due to the calculated runaway electron current
discussed above. The difference from the Schenter-Liboff
results is from the different choice of boundary condi-
tions of the system. They used variable upper limits of
the cutoff momentum. We want to stress once again that
in this region no stationary solution is possible by the in-
ternal dissipation processes. This explains that different
attempts yield different results in this field domain by
the chosen boundaries of the system.

IV. FIELD-DEPENDENT PLASMA
COMPOSITION

The second problem in calculating the electric current
density is the determination at the plasma composition.
According to the expression (3.6) for the electron distri-
bution function we have to know the number densities of
the free electrons, the protons, and the hydrogen atoms.

In the case of weak electric fields the linear-response
theory can be applied, which allows us to determine the
plasma composition from a Saha equation, valid for the
thermodynamic equilibrium [3]. But this treatment is not
be justified for plasmas in high electric fields. Strong de-
viations of the distribution function from the Maxwellian
behavior caused by the electric field give rise to consider-
able changes in the plasma composition, which is now de-
scribed by nonequilibrium rate equations instead of Saha
equations.

In order to determine the composition of a hydrogen
plasma in an strong electric field we start from the rate
equation for the electron number density. Because we
consider a nonideal hydrogen plasma this equation may
be obtained from the generalized Boltzmann equation
(2.1), which accounts for reaction processes and many-
body effects as well as external fields. Following the pa-
pers we arrive at

—g—tne = Z Z (aﬂnanJII{ — ,BZnanenp) .

a=e,p j

(4.1)

The quantum statistical expressions for the impact ion-
ization and three-body recombination coefficients in
terms of medium-dependent scattering quantities and
distribution functions can be found in [16].

In the stationary case, taking into account the atomic
ground state only, we get from (4.1)

ng_ _ Be(E)
af(E)’

neng (4.2)
where ng is total number density of the hydrogen atom
and F denotes the electric-field strength. In the zero-field
case, the following relation can be found from considering
the local equilibrium case and quasiparticle energies in
rigid shift approximation:

B; = OtjAg exp[—(Ej +Aj — Ae— Ai)/kBT]. (4.3)

Therefore, it follows that [16]
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T~ A2 exp[—(EBj + A — A — ) /ksT).

MeTlg

(4.4)

J

This is the well-known Saha equation for a nonideal hy-
drogen plasma in thermodynamic equilibrium taking into
account that the averaged energy shifts are equal to the
interaction parts of the chemical potentials.

Of course, the relation (4.3) and therefore the mass-
action law (4.4) are not valid for plasmas which are in-
fluenced by a strong electric field. Now we have to start
from the more general expression (4.2), which represents
a field-dependent nonequilibrium mass-action law. It re-
quires the calculation of the ionization as well as the re-
combination coefficients separately.

First, results for the coefficient of ionization from the
atomic ground state in dense plasmas in a strong electric
field were given in [14]. Starting from the expression

2wm e :
1_ 277 ion
a, (k) - de f(e)eoi™(e),

(4.5)
which is valid for ground-state ionization and for the non-
degenerate plasma state, it was calculated in a modified
first Born approximation including many-body effects in
the cross section and in the field-dependent effective ion-
ization energy I§T

L% = |Ei |+ AL(E) + A, — A, (4.6)

In order to determine the field-dependent plasma com-
position from (4.2) we need the recombination coefficient
too. But we will solve this problem in a first approxima-
tion introducing an effective temperature by

T(B) = = (Biin(E)), @7

where the average has to be carried out with the electron
distribution function given by (3.6). Then it is possible to
calculate a from [ using a modified equilibrium relation
as given by(4.3), but now with the effective temperature
(4.7). The results can be found in [14].

V. THE ELECTRICAL TRANSPORT
PROPERTIES

dc conductivity

We define the electrical conductivity in a strong elec-
trical field by the mean particle current density in the
following way

e

. oo ) rel
Jj= —A p’fi(p, E)dp = o(E)E (1 + E}; ) .

mném2h3

(5.1)

Here f! follows from (3.3) with the relaxation time 7,
and the isotropic field-dependent distribution function fq
determined in Sec. IV. The relaxation term § E™! follows
from the field dependence of the collision integral (2.9)
and is given by [25, 30]
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2 (5.2)

E 3¢,

Here @ is the standard error function [39]. The parameter
z is the product (Agskp) of the screening parameter and
the thermal de Broglie wave length [26] of two particles:

1 1 1
3o = (o + o ) g
Ma mp % + %_Th
Mg mp
and thus describes the quantum interference effects.

In Fig. 6 the results are shown for the electrical con-
ductivity as a function of the total electron density for
different field strengths. The temperature is 16 000 K.

In order to demonstrate the influence of the electric
field we consider the deviations of the field-dependent
conductivity from the linear-response result given by the
lowest curve. As expected, a strong influence of the field
is observed at lower densities and it tends to higher den-
sities as the field grows up (dotted line). This increase of
the electrical conductivity at low densities can be under-
stand easily. First, it results from the fraction of electrons
with higher energies due to the longer mean free path in
the lower density range.

The second important effect follows from the plasma
composition results determined by the field-dependent
nonequilibrium Saha equation as discussed in Sec. IV.
The field dependence of the plasma composition on the
conductivity can also be seen in Fig. 6. There we plot-
ted the result of the conductivity with field-dependent
mass-action law (solid line) and the result with field-
independent equilibrium Saha equation (dotted line).
The influence of the field on the ionization degree and
therefore on the plasma composition leads to a remark-
able enhancement of the nonlinear static conductivity.
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FIG. 6. The self-consistent static conductivity (solid) vs

total electron density. For the reason of comparison the con-
ductivity is plotted, where the field influence on the degree of
ionization is neglected (dotted).
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For lower densities the breakdown value of conductivity
agrees with the non-self-consistent one. The influence of
field are remarkable shifted to higher values of density in
comparison to the case, where the plasma composition is
not field dependent.

As our results show, it is very important to calculate
the plasma composition from a field-dependent mass-
action law. The higher degree of ionization due to the
strong electric field gives rise to a remarkable effect in
the electrical conductivity.

Of course, at higher densities the influence of the elec-
tric field on the conductivity becomes small. But now
many-particle effects are of importance because of strong
correlations in the plasma. We observe a minimum be-
havior in the electrical conductivity due to the formation
of bound states. In comparison to the result (dotted
curve) the minimum is reinforced because of the field ef-
fects. At densities n, > 1022 cm~2 the electrical conduc-
tivity increases drastically. This behavior, which results
from the pressure ionization of hydrogen atoms in the
dense plasma, describes the Mott transition in the elec-
trical conductivity.

VI. CONCLUSION

In this paper we intend to exceed the linear transport
theory to higher field strengths but remain still below the
field-emission region. The field dependence of the colli-
sion integral gives rise to a renormalization field strength,
which corrects the usual transport theory.

The nonlinear behavior of the conductivity is calcu-
lated. It is found that the conductivity and therefore
the flux of particles is strongly enhanced in low-density
regime, whereas for higher densities the many-particle ef-
fects dominate and the Mott transition occur. Between
these two regions we find a window where bound states
are built.

The plasma composition is determined by a nonequilib-
rium rate equation. The influence of the applied electric
field on the ionization coeflicients and therefore on the
plasma composition is determined self-consistently with
the found distribution function on Fokker-Planck level of
approximation. A remarkable enhancement of the con-
ductivity is found due to the field influence on the ion-
ization coeflicients.

Above a certain critical field strength the runaway elec-
trons occur, which is connected with nonstationarity. In
this regime the determination of the distribution func-
tion is crucial influenced by the chosen boundaries. This
is faced by ad hoc assumptions about the maximum value
of energy a charged particle can reach in the test system.
Different attempts are compared and we have chosen the
Gurevich idea to calculate the runaway electron flux ex-
plicitly.
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